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1. Introduction 

The general problem of detecting humans in images and videos has been heavily researched over 

the past decade. There are many applications that require accurate and efficient human detectors 

with the most obvious being automatic visual surveillance, in which the presence and behavior of 

individuals in an area of interest is closely monitored. Given the steep increase in asymmetric 

and urban warfare in the past decade, efficient and accurate dismount detection has become an 

essential operational capability in the military arena. Another important application of human 

detector is in the field of robotics, as many robotic technologies require smooth interactions 

between robots and humans. One way for robots to recognize humans is to detect them with 

visual sensors (cameras). Yet another application is a computer-driven car. Safety issues 

represent a significant portion of the concerns when designing an autonomous car. Detecting, 

locating, and avoiding nearby pedestrians is paramount to addressing these concerns. While on 

the surface this problem may seem easily solvable, the large variability in appearance due to 

clothing, physique, pose, and viewpoint make human detection challenging. For example, a 

young girl wearing a swimming suit has a vastly different appearance than a bearded man 

dressed in hunting gear. Both of them will look radically different from a football player viewed 

from his side. Recognizing humans across this vast spectrum of appearances is a very difficult 

task. 

While researchers have taken several approaches to detecting humans, the most common is the 

sliding window technique. The sliding window approach involves developing a detector for a 

fixed-size window and then evaluating that detector on a dense grid of locations throughout the 

scale and space of the image. Due to the large number of evaluation locations for a given image, 

a detector must be very fast to operate on video in real time. Even a small improvement in speed 

for a single detection window can result in significantly less computation time for the evaluation 

of an entire image or video. 

In this report, we present an implementation of a sliding window pedestrian detector. Our 

detector is based on the work of Zhu et al. (1). Our method most notably differs from their 

method in the boosting algorithm employed. Zhu et al. use AdaBoost, while we use the more 

general Asymmetric Boosting, which optimizes for arbitrary Type 1 and Type 2 error penalties 

(2). This difference enables us to achieve similar detection and false positive rates in a cascade 

stage while using fewer weak classifiers, thus decreasing the run time on test images. In 

actuality, we were not able to replicate the results presented by Zhu et al. and our corresponding 

AdaBoost detector performed worse than their reported results. While we could not achieve their 

reported performance, we were able to improve upon our implementation of Zhu’s algorithm. 

Our improvement could potentially transfer to a better original implementation. The rest of the 

report is organized as follows: section 2 contains descriptions of works related to ours, section 3 
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contains implementation details, section 4 contains experiments and results, and section 5 

concludes the report. 

2. Related Work 

Pedestrian detection has been studied for the better part of the past 20 years and we briefly 

describe the works most closely related to our detector. Perhaps the most well-known human 

detection algorithm was presented by Dalal and Triggs (3). Their method involves training a 

linear Support Vector Machine (SVM) on a dense grid of Histogram of Oriented Gradient 

(HOG) features. The main contribution of their method is the use of HOG features in human 

detection. They studied the effects of altering ways to calculate and normalize the features and 

presented their results. Zhu et al. increased the speed of the Dalal and Triggs method while 

maintaining a comparable performance. They train a cascade with AdaBoost to prune out 

negative samples. Their cascade learning algorithm was inspired by the Viola and Jones object 

detector (4). Viola and Jones used a set of simple Haar-like features to perform face detection. 

As with human detection, there has been significant investigation into boosting. Boosting was 

first introduced by Schapire and Freund (5) and has been a powerful tool frequently used in the 

machine learning community ever since due to its simplicity and performance. Boosting works 

by iteratively training a weak classifier using a machine learning algorithm, adding it to the set of 

previously trained weak classifiers, and then updating the distribution of the training data based 

on the output of the newest weak classifier. After each iteration, samples that were misclassified 

in previous iteration are given more weight and samples that were classified correctly are given 

less weight. That way, samples that are harder to classify will receive more “attention” from the 

training algorithm. A statistical explanation for the excellent performance of AdaBoost and its 

tendency of not overfitting was given by Friedman et al. (6), which recasts boosting as a 

regression problem. 

In a cascade detector, the objective is to train classifiers that have asymmetric error rates (i.e., 

different false detection and miss rates). There have been many attempts to generalize AdaBoost 

to solve this problem. We use a method proposed by Masnadi (2), which extends the statistical 

formulation of Friedman. 

3. Implementation 

3.1 Operation 

Like many detection algorithms, our human detector adopts the sliding window approach. That 

is, a single detector is trained using fixed-size image patches (128 x 64 pixels) extracted from a 
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dense set of overlapping locations (windows) throughout the input image at different scales. This 

is realized by first down-sampling the image several times to create an image pyramid and then 

training and evaluating the detector at a dense grid of locations within each layer of the pyramid. 

We downsize the image by 5% between each level of the pyramid, yielding approximately 14 

levels per octave. 

We evaluate each window using a cascaded detector. As shown in figure 1, a cascaded detector 

is a sequence of strong classifiers (stages) that attempts to reject negative samples while allowing 

positive samples to pass through. For a sample to be detected as a human, it must be deemed a 

human by every stage of the cascade. To account for this structure, the cascade stages are 

designed in such a way that there is a very low probability of a stage missing a detection, while 

there is a fairly high probability of identifying a negative sample as a human. This structure 

allows the cascade to operate more efficiently as well. The vast majority of samples evaluated by 

a detector will be negative, therefore filtering them out quickly greatly improves the overall 

speed of the detector. While it may perform slower on positive samples, there are so few of them 

in an image that the running time of the cascade will not be noticeably affected. We 

experimented with cascade architectures that have 20 to 40 stages in complexity.  

 

Figure 1. Structure of a cascade detector. 

Each cascade stage (strong classifier) is itself comprised of a set of SVMs (weak classifiers). 

Each weak classifier operates on the HOG features of a given sub-window (block) within the 

window. The weak classifiers are combined by weighting and adding their binary outputs and 

then thresholding them to generate a binary decision. This (arithmetic) method of combining the 

weak classifiers differs from the logical method of combining the strong classifiers. 

One last step that must be performed is non-maximal suppression. Typically, the detector yields 

several overlapping detections near the location of a single pedestrian. This naturally occurs due 

to the dense sampling of evaluation windows throughout the images. Obviously, it is more 

desirable to select only the best detection for each target. We use the non-maximal suppression 

algorithm of Dollar et al. (7) to perform this task and obtain a final detection. 
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3.2 Feature Extraction 

We use HOG features as described by Dalal and Triggs, which are closely related to the Scale 

Invariant Feature Transform (SIFT) described by Lowe (8). Our HOG features are all extracted 

from blocks containing four cells configured in a 2 by 2 layout. The blocks can have one of three 

aspect ratios: 2x1, 1x1, or 1x2. The cells take on the aspect ratio of the block to which they 

belong. We use a very large set of blocks of all sizes to train the cascade. While not every feature 

is used, the training algorithm has 5028 blocks available to it, ranging from 12 by 12 to 128 by 

64 in size. 

Features are extracted by first calculating the gradient at each pixel and a set of HOG features is 

calculated for each cell. A gradient is binned according to its orientation (we use 9 bins over 

180°) and the weight it contributes is proportional to its magnitude. As described by Dalal and 

Triggs, normalization of the histograms within a block is crucial to the effectiveness of the 

features. Therefore, we normalize the features for each block using the 1-norm. Thus, for each 

block, we calculate a 36-dimensional feature with unit 1-norm. 

3.3 Integral HOG Image 

In order to enable the quick calculation of features, we implemented a data structure called an 

Integral HOG Image. As described by Zhu et al., based on the work done by Viola and Jones, the 

Integral HOG Image enables the HOG feature for any rectangular cell to be calculated very 

quickly. At each pixel, the Integral HOG Image stores the raw (not normalized) HOG feature of 

the region above and to the left of the corresponding pixel in the original image. As shown in 

figure 2, once the Integral HOG Image is constructed, a HOG feature for a given region can be 

calculated by adding four histograms and then normalizing. 
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Figure 2. Efficient computation of HOG features from an integral HOG image. 

3.4 Training 

As stated previously, the objective of the cascade structure is to reject as many negative samples 

as possible, while allowing almost all positive samples to pass through each stage. This translates 

to each stage having an extremely high detection rate with a moderate false positive rate. Each 

stage achieves this objective by using Asymmetric Boosting.  

We begin the training of each stage by obtaining sets of positive and negative samples. We 

initialize the distribution of the samples to be uniform. In each iteration of the boosting 

algorithm, we randomly select a set of 125 blocks and train a linear SVM on the features 

extracted from their corresponding locations in the training samples. We slightly alter the 

standard SVM algorithm to handle unequal weights in the sample distribution. We add the best 

feature to the current classifier, update the weights of the samples, and continue to the next 

iteration. This algorithm runs until the combined weak classifiers achieve a certain performance 

metric (high detection rate, moderate false positive rate) on the training set. When this occurs, 

the strong classifier is considered to be trained. Figure 3 depicts a flowchart of the training 

algorithm. The pseudocode for the boosting portion of the algorithm is also shown in figure 3. 
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Figure 3. High-level flowchart of the cascade training algorithm. 

As in Dalal and Triggs and Zhu et al., we train on the INRIA dataset. We use all of the positive 

samples (and their horizontal mirrors) to train each stage. We choose negative samples that have 
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not been filtered out by any of the previously trained stages. This is analogous to the mining of 

“hard negatives” in Dalal and Triggs to improve performance.  

One advantage of this training process is that it is incremental. That is, if a 20-stage classifier is 

trained and a 30-stage classifier is needed, it can be built off of the 20-stage classifier rather than 

starting from scratch. The incremental aspect is also useful for evaluation. Suppose a 40-stage 

classifier is trained but the detection rate is not high enough. Stages of the classifiers can simply 

be removed so as to improve the detection rate (at the expense of a larger false positive rate). 

This is an effective way to generate a receiver operating characteristic (ROC) curve for the 

detector (as opposed to the standard varying threshold method). 

Our implementation of the training algorithm can be founded in the appendix. 

4. Experiments 

4.1 Classifier Reduction 

The main difference between our method and Zhu’s method is the use of Asymmetric Boosting 

to reduce the number of classifiers. We compare our Asymmetric Boosting based algorithm 

against a cascade trained using AdaBoost. As shown in figure 4, Asymmetric Boosting trains 

cascade stages with a smaller number of classifiers but attains comparable performance. The 

reduction in weak classifiers directly corresponds to a reduction in computation time of the 

cascade. Thus, the cascade can process more images or video at a faster frame rate. 

While we were able to decrease the number of weak classifiers used in the strong classifier 

training, we were unable to match the results published by Zhu. Therefore our classifier does not 

match the speed of Zhu’s classifier (though it does outperform our implementation of Zhu’s 

classifier). We are currently investigating the causes of this discrepancy. 
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Figure 4. Comparison of the number of classifiers used in each stage when using  

AdaBoost and Asymmetric Boosting.  

4.2 Performance 

We encountered problems with replicating the accuracy of Zhu’s classifier as well. Their 

classifier achieves comparable performance to the Dalal and Triggs detector. We evaluated our 

algorithm and the Dalal and Triggs algorithm on the testing portion of the INRIA pedestrian 

detection dataset. As shown in figure 5, the results of our classifier with various parameter 

settings do not match up to HOG. At 0.1 false positives per image (FPPI) rate, the Dalal and 

Triggs detector has a miss rate of 0.49 while our detector has a miss rate of 0.67. We are 

currently investigating the cause of this discrepancy. 
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Figure 5. Performance of our algorithm and the Dalal and Triggs algorithm on  

the INRIA pedestrian detection dataset.  

4.3 Sample Results 

In order to give a better feel for how our detector performs, we provide a few example images 

with detection results. Note that these results have not been processed by non-maximal 

suppression so as to illustrate the behavior of the cascade. 

The first image, shown in figure 6, shows the classifier producing the desired results. There are 

four people in the image and the classifier manages to detect each one of them. The classifier 

does not detect humans at any other locations, thus there are no false positives. In general, the 

detector does well in images without much clutter in the background. 
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Figure 6. Example of successfully human detections without any false positives. 

The second image, shown in figure 7, shows the classifier producing fairly good, but not ideal 

results. There are two people in the image. Depending on the configuration of the non-maximal 

suppression algorithm, the person on the left may or may not be detected. This also illustrates the 

importance of choosing a good non-maximal suppression algorithm. Note that some methods of 

non-maximal suppression may work better for some detection algorithms and worse for others. 

 

Figure 7. Example of human detections without strong false positives. 

The third image, shown in figure 8, shows the classifier producing poor results. In this image, 

there are two people. While the detector manages to detect both of them, it also produces several 

false positives. This tends to be a common theme in many test images (not shown); if false 

positives exist in an image, there tend to be many of them. Urban scenes tend to exhibit this 

problem more than natural scenes. A large number of false positives in a small percentage of 

images could be one reason why our results are poor. Figure 8 also shows how our detector has 

mistakenly detected cars, mainly due to some competing car structures that incur similar HOG 

features as those produced by signatures of pedestrians. 



11 

 

Figure 8. Example of human detections with several false alarms. 

5. Conclusion 

In conclusion, we have described in detail our implementation of a cascaded HOG-based 

pedestrian detector, from feature extraction to training to evaluation. While we could not re-

create the results of the cascade classifier by Zhu et al. (1), we offer a way to improve the 

classifier by replacing AdaBoost with Adaptive Boosting in the training algorithm. We 

demonstrated that this improves results on our implementation of their classifier. 
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Appendix. Core Source Code 

This appendix contains the core source code for the implementation of the algorithm described in 

this report. The following shows the implementation of the methods for classes representing 

weak, strong, and cascade classifier classes. This includes the training algorithms. 

 
/* 
 * Classifiers.cpp 
 * 
 *  Created on: Apr 3, 2012 
 *      Author: creale 
 */ 
 
#include "Classifiers.h" 
#include "IntegralHOGImgFixed.h" 
#include "IntegralHOGImg.h" 
#include <set> 
 
using namespace std; 
 
void WeakClassifier::train(Mat &trainData, Mat &responses, Mat &weights){ 
 double cvals[4] = {8,32,128,512}; 
 params.svm_type = CvSVM::C_SVC; 
 params.kernel_type = CvSVM::LINEAR; 
 params.C = SVM_C; 
 CvMat weightsmat = weights; 
 params.class_weights = &weightsmat; 
 Mat hyperplaneMax; 
 double shiftMax, max_acc = -1000; 
 int npos = 0; 
 while(responses.at<float>(++npos) == 1); 
 
 double T_plus = 0; 
 for(int i = 0; i < npos; i++){ 
  T_plus+=weights.at<double>(i); 
 } 
 double T_minus = 0; 
 for(int i = npos; i < weights.rows; i++){ 
  T_minus+=weights.at<double>(i); 
 } 
 
 for(int i = 0; i < 4; i++){ 
  params.C = cvals[i]; 
  svm.train(trainData, responses, Mat(), Mat(), params); 
 
  Mat pred = Mat::eye(trainData.cols,trainData.cols,CV_32F); 
  hyperplane = Mat::zeros(pred.rows,1,CV_32F); 
  shift = svm.predict(Mat::zeros(1,pred.rows, CV_32F), true); 
  for(int r = 0; r < pred.rows; r++){ 
   float temp = svm.predict(pred.row(r), true)-shift; 
   hyperplane.at<float>(r,0) = temp; 
  } 
 
  Mat temp(1, pred.cols, CV_32F); 
  for(int c = 0; c < pred.cols; c++) 
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   temp.at<float>(c) = rand(); 
  while(this->predict(temp,true) == 0) 
   temp.at<float>(0) = rand(); 
 
  if(this->predict(temp, false) != svm.predict(temp, false)){ 
   hyperplane = hyperplane*-1; 
   shift = -shift; 
  } 
 
  double bee = 0; 
  for(int j = 0; j < npos; j++){ 
   if(this->predict(trainData.row(j), false) == -1){ 
    bee+=weights.at<double>(j); 
   } 
  } 
  double dee = 0; 
  for(int j = npos; j < weights.rows; j++){ 
   if(this->predict(trainData.row(j), false) == 1){ 
    dee+=weights.at<double>(j); 
   } 
  } 
 
  //double weig = getWeight(.5, C1, C2, bee, dee, T_minus, T_plus, .001); 
  double acc = 1 - dee - bee;//-getLoss(weig, C1, C2, bee, dee, T_minus, T_plus); 
 
  if(acc > max_acc){ 
   hyperplaneMax = hyperplane; 
   shiftMax = shift; 
  } 
 } 
 
 hyperplane = hyperplaneMax; 
 shift = shiftMax; 
 
 double right = 0, wrong = 0; 
 double right1 = 0, wrong1 = 0; 
 for(int r = 0; r < trainData.rows; r++){ 
  bool retDFVal = false; 
  float temp = predict(trainData.row(r), retDFVal); 
  if(temp == 1) 
   if(responses.at<float>(r) == 1) 
    right++; 
   else 
    wrong++; 
  else 
   if(responses.at<float>(r) == 1) 
    wrong1++; 
   else 
    right1++; 
 
 } 
 
#ifdef LIBSVM 
 svm_free_and_destroy_model(&model); 
 delete xspace; 
 delete prob.x; 
 delete prob.y; 
#else 
 svm.clear(); 
#endif 
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 accuracy = (right+right1)/(right+right1+wrong+wrong1); 
 weight = .5*log(accuracy/(1-accuracy + numeric_limits<double>::epsilon()) + 
numeric_limits<double>::epsilon()); 
 
 float detect = right/(right + wrong1); 
 float falAlarm = wrong/(right1 + wrong); 
 
 //std::cout << "\tCval: " << maxc << " Acc: " << maxacc << std::endl; 
 //std::cout << "Accuracy: " << accuracy << " Det Rate: " << detect << " FA Rate: " << 
falAlarm << std::endl; 
} 
 
float WeakClassifier::predict(Mat sample, bool soft){ 
 float retval = shift; 
 for(int i = 0; i < hyperplane.rows; i++) 
  retval+=hyperplane.at<float>(i)*sample.at<float>(i); 
 if(soft) 
  return retval; 
 else 
  return (retval <= 0) ? 1 : -1; 
} 
 
Mat WeakClassifier::predictN(Mat &samples, bool soft){ 
 Mat retval(samples.rows,1,CV_32F); 
 for(int r = 0; r < samples.rows; r++) 
  retval.at<float>(r) = predict(samples.row(r), soft); 
 return retval; 
} 
 
void WeakClassifier::setParams(CvSVMParams params){ 
 this->params = params; 
} 
 
void WeakClassifier::clear(){ 
 svm.clear(); 
} 
 
WeakClassifier * WeakClassifier::clone(){ 
 WeakClassifier *retval = new WeakClassifier; 
 retval->accuracy = this->accuracy; 
 retval->feat = this->feat; 
 retval->hyperplane = this->hyperplane.clone(); 
 retval->shift = this->shift; 
 retval->weight = this->weight; 
 return retval; 
} 
 
float getWeight(float init_alpha, float c1, float c2, float bee, float dee, float Tminus, 
float Tplus, float epsilon){ 
 double alpha = init_alpha; 
 double func_eval = c1*(bee-Tplus)*exp(-c1*alpha)+c2*(dee-Tminus)*exp(-
c2*alpha)+bee*c1*exp(c1*alpha)+dee*c2*exp(c2*alpha); 
 while(abs(func_eval) > epsilon){ 
  alpha = alpha - func_eval/(-c1*c1*(bee-Tplus)*exp(-c1*alpha)-c2*c2*(dee-
Tminus)*exp(-c2*alpha)+bee*c1*c1*exp(c1*alpha)+dee*c2*c2*exp(c2*alpha)); 
  func_eval = c1*(bee-Tplus)*exp(-c1*alpha)+c2*(dee-Tminus)*exp(-
c2*alpha)+bee*c1*exp(c1*alpha)+dee*c2*exp(c2*alpha); 
 } 
 return float(alpha); 
} 
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float getLoss(float alpha, float c1, float c2, float bee, float dee, float Tminus, float 
Tplus){ 
 return -(bee-Tplus)*exp(-c1*alpha)-(dee-Tminus)*exp(-
c2*alpha)+bee*exp(c1*alpha)+dee*exp(c2*alpha); 
} 
 
float StrongClassifier::train(vector<IntegralHOGImgFixed*> &pos_imgs, 
vector<IntegralHOGImgFixed*> &neg_imgs, BoxGen &bg, int count){ 
 vector<FeatBox> fbs = bg.getnRandFeat(NRANDFEATS); //get 250 random features 
 vector<WeakClassifier*> weak250; //one classifier for each random feature 
 
 vector<Mat> testSoftResults; 
 vector<Mat> testSoftResultsUsed; 
 
 //ground truth of images (1 = human, -1 = non-human) 
 Mat classes((int)(pos_imgs.size()+neg_imgs.size()),1, CV_32F, Scalar(-1)); 
 classes.rowRange(Range(0,pos_imgs.size()-1)) *= -1; 
 
 int ntrainbits = pos_imgs.size() + neg_imgs.size(); 
 
 std::cout << "Num training bits: " << ntrainbits << " " << std::endl; 
 
 int npostest = pos_imgs.size(); 
 
 Mat weights(ntrainbits,1,CV_64F, Scalar(0.001)); 
 weights.rowRange(0,pos_imgs.size())*=(neg_imgs.size()); 
 weights.rowRange(pos_imgs.size(), ntrainbits)*=(pos_imgs.size()); 
 double sum = 0; 
 for(int i = 0; i < weights.rows; i++){ 
  sum += weights.at<double>(i); 
 } 
 for(int i = 0; i < weights.rows; i++){ 
  weights.at<double>(i) /= sum; 
 } 
 
 threshold = 0; 
 double fi = 1; 
 
 while(fi > FI_MAX){ 
  fbs.clear(); 
  fbs = bg.getnRandFeat(NRANDFEATS); 
  //testSoftResults.clear(); 
 
  //resample distribution based on weights 
  //vector<int> trainInds; 
  //double unif = 1/((double)classes.rows*SVM_UP); 
  //for(int j = 0; j < weights.rows; j++){ 
  // for(double k = .5; k*unif < weights.at<double>(j);k++) 
  //  trainInds.push_back(j); 
  //} 
 
  //create list of classifiers 
  for(int i = 0; i < NRANDFEATS; i++){ 
   WeakClassifier *w = new WeakClassifier(); 
   Mat tempfeats = extractFeats(fbs[i], pos_imgs, neg_imgs, 2, 2); 
 
//   Mat featsSamp(trainInds.size(), tempfeats.cols, CV_32F); 
//   Mat classSamp(trainInds.size(), classes.cols, CV_32F); 
 
//   for(int j = 0; j < trainInds.size(); j++){ 
//    classSamp.at<float>(j) = classes.at<float>(trainInds[j]); 
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//    //featsSamp.push_back(tempfeats.row(trainInds[j])); 
//    Mat tmp = featsSamp.row(j); 
//    tempfeats.row(trainInds[j]).copyTo(tmp); 
//   } 
 
   //w->train(featsSamp, classSamp, weights); 
   w->train(tempfeats, classes, weights); 
   w->setFeat(fbs[i]); 
   w->ind = weak250.size(); 
   weak250.push_back(w); 
 
   Mat temp2(ntrainbits, 1, CV_32F); 
   for(int r = 0; r < tempfeats.rows; r++) 
    temp2.at<float>(r) = w->predict(tempfeats.row(r),false); 
   testSoftResults.push_back(temp2); 
 
   if(i % 25 == 24){ 
    std::cout << i+1 << " "; 
    std::cout.flush(); 
   } 
  } 
 
  double T_plus = 0; 
  for(int i = 0; i < pos_imgs.size(); i++){ 
   T_plus+=weights.at<double>(i); 
  } 
  double T_minus = 0; 
  for(int i = pos_imgs.size(); i < weights.rows; i++){ 
   T_minus+=weights.at<double>(i); 
  } 
 
  //update accuracies based on weights 
  for(int i = 0; i < weak250.size(); i++){ 
 
//   double acc = 0; 
//   for(int j = 0; j < weights.rows; j++){ 
//    if((((testSoftResults[i].at<float>(j) >= 0) ? 1 : -1) 
*classes.at<float>(j)) == 1) 
//     acc += weights.at<double>(j); 
//   } 
//   if(acc >= .5){ 
//    weak250[i]->accuracy = 
std::max<double>(std::min<double>(acc,.999),.001); 
//    weak250[i]->weight = .5*log(weak250[i]->accuracy/(1-weak250[i]-
>accuracy)); 
//   }else{ 
//    acc = 1-acc; 
//    weak250[i]->shift = -weak250[i]->shift; 
//    weak250[i]->hyperplane = -weak250[i]->hyperplane; 
//    weak250[i]->accuracy = 
std::max<double>(std::min<double>(acc,.999),.001); 
//    weak250[i]->weight = .5*log(weak250[i]->accuracy/(1-weak250[i]-
>accuracy)); 
//    testSoftResults[i] = -testSoftResults[i]; 
//   } 
 
   double bee = 0; 
   for(int j = 0; j < pos_imgs.size(); j++){ 
    if(testSoftResults[i].at<float>(j) == -1){ 
     bee+=weights.at<double>(j); 
    } 
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   } 
   double dee = 0; 
   for(int j = pos_imgs.size(); j < weights.rows; j++){ 
    if(testSoftResults[i].at<float>(j) == 1){ 
     dee+=weights.at<double>(j); 
    } 
   } 
 
   weak250[i]->weight = getWeight(.5, C1, C2, bee, dee, T_minus, T_plus, 
.001); 
   //std::cout << T_minus << " " << T_plus << " " << dee << " " << bee << " 
" << weak250[i]->weight << std::endl; 
   weak250[i]->accuracy = -getLoss(weak250[i]->weight, C1, C2, bee, dee, 
T_minus, T_plus); 
  } 
 
  //find best feature available to use 
  int ind = 0; 
  /* 
  double min_fi = 1.01; 
  double accur = 0; 
  for(int i = 0; i < weak250.size(); i++){ 
   //Calculate performance after addition of new weak classifier 
   Mat softCtemp(testSoftResults[0].rows,1,CV_32F,Scalar(0)); 
   for(int j = 0; j < testSoftResultsUsed.size(); j++){ 
    softCtemp = softCtemp + testSoftResultsUsed[j]*weakCs[j]->weight; 
   } 
   softCtemp = softCtemp + testSoftResults[i]*weak250[i]->weight; 
 
   //Find threshold to maintain DI_MIN 
   Mat softPosTemp = softCtemp.rowRange(0,npostest); 
   sort(softPosTemp.begin<float>(), softPosTemp.end<float>()); 
   float threshTemp = softPosTemp.at<float>(floor(npostest*(1.0 - DI_MIN))) 
- .0001; 
 
   //Calculate fi 
   Mat softNegTemp = softCtemp.rowRange(npostest, softCtemp.rows); 
 
   float falsepost = 0; 
   for(int r = 0; r < softNegTemp.rows; r++){ 
    if(softNegTemp.at<float>(r) >= threshTemp) 
     falsepost++; 
   } 
   double fi_temp =(falsepost/((double)softNegTemp.rows)); 
   if(fi_temp < min_fi){ 
    ind = i; 
    min_fi = fi_temp; 
    accur = weak250[i]->accuracy; 
   }else 
    if(fi_temp == min_fi && accur < weak250[i]->accuracy){ 
     ind = i; 
     accur = weak250[i]->accuracy; 
    } 
  } 
  */ 
 
  double max_acc = -100000; 
  for(int i = 0; i < weak250.size(); i++){ 
   //std::cout << weak250[i]->accuracy << " "; 
   //if(i % 25 == 24) 
   //std::cout << std::endl; 
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   if(max_acc < weak250[i]->accuracy){ 
    ind = i; 
    max_acc = weak250[i]->accuracy; 
   } 
  } 
 
  WeakClassifier *curr = weak250[ind]->clone(); 
  testSoftResultsUsed.push_back(testSoftResults[ind]); 
  weakCs.push_back(curr); 
 
  //Calculate performance after addition of new weak classifier 
  Mat softCombined(testSoftResults[0].rows,1,CV_32F,Scalar(0)); 
  for(int i = 0; i < testSoftResultsUsed.size(); i++){ 
   softCombined = softCombined + testSoftResultsUsed[i]*weakCs[i]->weight; 
  } 
 
  //Find threshold to maintain DI_MIN 
  Mat softPos = softCombined.rowRange(0,npostest).clone(); 
  sort(softPos.begin<float>(), softPos.end<float>()); 
  threshold = softPos.at<float>(floor(npostest*(1.0 - DI_MIN))) - .0001; 
 
  //Calculate fi 
  Mat softNeg = softCombined.rowRange(npostest, softCombined.rows); 
 
  float falsepos = 0; 
  for(int r = 0; r < softNeg.rows; r++){ 
   if(softNeg.at<float>(r) >= threshold) 
    falsepos++; 
  } 
  fi=(falsepos/((double)softNeg.rows)); 
 
  float det = 0; 
  for(int r = 0; r < softPos.rows; r++){ 
   if(softPos.at<float>(r) >= threshold) 
    det++; 
  } 
  det=(det/((double)softPos.rows)); 
 
  std::cout << " fi: " << fi << " det: " << det << " thrsh: " << threshold << " 
New acc/weight: " << weak250[ind]->accuracy << " " << weak250[ind]->weight << " " << ind << " 
"; 
  std::cout << "Feature (x y w h):(" << weak250[ind]->feat.box.x << " " << 
weak250[ind]->feat.box.y << " " << weak250[ind]->feat.box.width << " " << weak250[ind]-
>feat.box.height << ") " << std::endl; 
 
  //update distribution 
  double sum = 0; 
  for(int i = 0; i < weights.rows; i++){ 
   double classifierWeight = weak250[ind]->weight; 
   //weights.at<double>(i) = weights.at<double>(i)*exp(-
WEIGHT_WEIGHT*classifierWeight*((testSoftResults[ind].at<float>(i) >= 0) ? 1 : -1) * 
classes.at<float>(i)); 
   if(i < pos_imgs.size()) 
    weights.at<double>(i) = weights.at<double>(i)*exp(-
C1*classifierWeight*testSoftResults[ind].at<float>(i)); 
   else 
    weights.at<double>(i) = 
weights.at<double>(i)*exp(C2*classifierWeight*testSoftResults[ind].at<float>(i)); 
   sum += weights.at<double>(i); 
  } 
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  for(int i = 0; i < weights.rows; i++){ 
   double temp = weights.at<double>(i) / sum; 
   weights.at<double>(i) = temp; 
  } 
 
  //cleanup 
  //vector<int> usedFeatIDS; 
  //usedFeatIDS.push_back(weak250[ind]->feat.id); 
  //bg.markUsed(usedFeatIDS); 
 
  //for(int i = 0; i < weak250.size(); i++) 
  //if(i != ind) 
  //delete weak250[i]; 
  //weak250.clear(); 
 } 
 
 std::stringstream filename; 
 filename << "ccout\\train_" << count << ".txt"; 
 ofstream outFile(filename.str()); 
 for(int i = 0; i < testSoftResults.size(); i++){ 
  for(int j = 0; j < testSoftResults[i].rows; j++){ 
   outFile << testSoftResults[i].at<float>(j); 
   if(j < testSoftResults[i].rows-1) 
    outFile << " "; 
   else if (i < testSoftResults.size()-1) 
    outFile << std::endl; 
  } 
 } 
 outFile.close(); 
 
 vector<IntegralHOGImgFixed*> posList = loadPos(false); 
 vector<IntegralHOGImgFixed*> negList = loadNeg(false, 5, NULL); 
 std::stringstream filename2; 
 filename2 << "ccout\\test_" << count << ".txt"; 
 ofstream outFile2(filename2.str()); 
 for(int i = 0; i < weak250.size(); i++){ 
  for(int j = 0; j < posList.size(); j++){ 
   float * tempFeat = posList[j]->extractFeature(weak250[i]->feat.box,2,2); 
   Mat sample(1, 36, CV_32F, tempFeat); 
   outFile2 << weak250[i]->predict(sample,false) << " "; 
   delete tempFeat; 
   if(i == weak250.size()-1) 
    delete posList[j]; 
  } 
  for(int j = 0; j < negList.size(); j++){ 
   float * tempFeat = negList[j]->extractFeature(weak250[i]->feat.box,2,2); 
   Mat sample(1, 36, CV_32F, tempFeat); 
   if(j < negList.size()-1) 
    outFile2 << weak250[i]->predict(sample,false) << " "; 
   else if(i <  weak250.size()-1) 
    outFile2 << weak250[i]->predict(sample,false) << std::endl; 
   else 
    outFile2 << weak250[i]->predict(sample,false); 
   delete tempFeat; 
   if(i == weak250.size()-1) 
    delete negList[j]; 
  } 
 } 
 outFile2.close(); 
 posList.clear(); 
 negList.clear(); 
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 for(int i = 0; i < weak250.size(); i++){ 
  delete weak250[i]; 
 } 
 weak250.clear(); 
 
 return (float)fi; 
} 
 
bool StrongClassifier::predict(IntegralHOGImgFixed &ihif){ 
 double result = 0; 
 for(WeakClassifier * wc: weakCs){ 
  FeatBox fb = wc->feat; 
  float * feat = ihif.extractFeature(fb.box,2,2); 
  Mat sample(1, 36, CV_32F, feat); 
  result += wc->predict(sample, false)*wc->weight; 
  delete feat; 
 } 
 
 return (result >= threshold); 
} 
 
float StrongClassifier::predict(IntegralHOGImg &ihi, Point p){ 
 double result = 0; 
 for(WeakClassifier * wc: weakCs){ 
  FeatBox fb = wc->feat; 
  float * feat = ihi.extractFeature(Rect(p.x+fb.box.x, p.y+fb.box.y, fb.box.width, 
fb.box.height),2,2); 
  Mat sample(1, 36, CV_32F, feat); 
  result += wc->predict(sample, false)*wc->weight; 
  delete feat; 
 } 
 
 return result - threshold; 
} 
 
Mat StrongClassifier::extractFeats(FeatBox fb, vector<IntegralHOGImgFixed*> pos_imgs, 
vector<IntegralHOGImgFixed*> neg_imgs, int xcells, int ycells){ 
 int featlen = NBINS*xcells*ycells; 
 int nfeats = pos_imgs.size() + neg_imgs.size(); 
 Mat retVal(nfeats, featlen, CV_32F); 
 
 for(int r = 0; r < pos_imgs.size(); r++){ 
  float *temp = pos_imgs[r]->extractFeature(fb.box,xcells,ycells); 
  for(int j = 0; j < featlen; j++){ 
   retVal.at<float>(r,j) = temp[j]; 
  } 
  delete temp; 
 } 
 
 for(int r = 0; r < neg_imgs.size(); r++){ 
  float *temp = neg_imgs[r]->extractFeature(fb.box,xcells,ycells); 
  for(int j = 0; j < featlen; j++){ 
   retVal.at<float>(r+pos_imgs.size(),j) = temp[j]; 
  } 
  delete temp; 
 } 
 
 return retVal; 
} 
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vector<IntegralHOGImgFixed*> loadPos(bool train){ 
 vector<IntegralHOGImgFixed*> pos_imgs; 
 string line; 
 string listfile; 
 
 if(train) 
  listfile = "train\\pos.lst"; 
 else 
  listfile = "test\\pos.lst"; 
 ifstream myfile (listfile); 
 if (myfile.is_open()){ 
  while (myfile.good()){ 
   getline (myfile,line); 
   Mat img = imread(line,0); 
   IntegralHOGImgFixed * hogimg = new IntegralHOGImgFixed(img); 
   pos_imgs.push_back(hogimg); 
  } 
  myfile.close(); 
 }else cout << "Unable to open file 1"; 
 
 return pos_imgs; 
} 
 
vector<IntegralHOGImgFixed*> loadNeg(bool train, int nperi, CascClassifier *cc){ 
 vector<IntegralHOGImgFixed*> neg_imgs; 
 string line; 
 string listfile; 
 
 if(train) 
  listfile = "train\\neg.lst"; 
 else 
  listfile = "test\\neg.lst"; 
 
 int counter = 0; 
 ifstream myfile2 (listfile); 
 if (myfile2.is_open()){ 
  while (myfile2.good()){ 
   getline (myfile2,line); 
   Mat img = imread(line,0); 
   if(cc == NULL){ 
    if(img.rows >= 130 && img.cols >= 66){ 
     for(int i = 0; i < nperi; i++){ 
      int x = rand() % (img.cols-66); 
      int y = rand() % (img.rows-130); 
      Mat subimg = img(Range(y,y+130), Range(x,x+66)); 
      IntegralHOGImgFixed *hogimg = new 
IntegralHOGImgFixed(subimg); 
      neg_imgs.push_back(hogimg); 
     } 
    } 
   }else{ 
    int count = 0; 
    Mat *imgptr = &img; 
    int newr = img.rows; 
    int newc = img.cols; 
    while(count < nperi && imgptr->rows > 130 && imgptr->cols > 66){ 
     vector<Rect> fps = cc->findFalsePos(*imgptr); 
     for(Rect rect : fps){ 
      int x = rect.x-1; //we want a one pixel cushion to 
create ihif 
      int y = rect.y-1; 
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      if(count < nperi){ 
       Mat subimg = imgptr-
>rowRange(y,y+130).colRange(x,x+66); 
       IntegralHOGImgFixed *hogimg = new 
IntegralHOGImgFixed(subimg); 
       neg_imgs.push_back(hogimg); 
       count++; 
      } 
     } 
 
     newr = newr/2; 
     newc = newc/2; 
     Mat *downImg = new Mat(newr, newc, imgptr->type()); 
     resize(*imgptr, *downImg, downImg->size(), 0, 0, 
CV_INTER_LINEAR); 
     if(imgptr->rows != img.rows) 
      delete imgptr; 
     imgptr = downImg; 
    } 
    delete imgptr; 
   } 
  } 
  myfile2.close(); 
 }else cout << "Unable to open file 2"; 
 return neg_imgs; 
} 
 
void CascClassifier::train(){ 
 time_t rawtime; 
 time(&rawtime); 
 tm *timeinfo = localtime(&rawtime); 
 int month = timeinfo->tm_mon + 1; 
 int day = timeinfo->tm_mday; 
 int year = timeinfo->tm_year+1900; 
 
 vector<IntegralHOGImgFixed*> pos_imgs = loadPos(true); 
 vector<IntegralHOGImgFixed*> neg_imgs; 
 
 std::cout << "Positive Images Loaded" << std::endl; 
 
 //create feature generator 
 int widths[] = {12,16,20,24,28,32,36,40,48,56,64}; 
 vector<int> wid; 
 for(int w = 0; w < 11; w++) 
  wid.push_back(widths[w]); 
 vector<int> ratios; 
 ratios.push_back(1); 
 ratios.push_back(0); 
 ratios.push_back(-1); 
 BoxGen bg(64, 128, wid, ratios); 
 
 double fi = 1; 
 double di = 1; 
 int count = 0; 
 int nperi = 5; 
 
 std::stringstream pfilename; 
 pfilename << "ccdata\\" << month << "_" << day << "_" << year << "_param" << ".txt"; 
 saveParamsToFile(pfilename.str()); 
 
 while(fi > F_TARG || count < 40){ 
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  neg_imgs = loadNeg(true, nperi, this); 
  if(neg_imgs.size() + pos_imgs.size() < 7000) 
   nperi*=2; 
 
  std::cout << "Negative Images Loaded" << std::endl; 
 
  vector<IntegralHOGImgFixed*> neg_imgs2; 
 
  //take subset of negative samples 
  for(int i = 0; i < neg_imgs.size(); i++){ 
   if((rand() % neg_imgs.size()) < 2*pos_imgs.size()) 
    neg_imgs2.push_back(neg_imgs[i]); 
  } 
 
  StrongClassifier * sc = new StrongClassifier(); 
  float fi_ = sc->train(pos_imgs, neg_imgs2, bg, count); 
  strongCs.push_back(sc); 
  fi*=fi_; 
  di*=DI_MIN; 
 
  int det = 0; 
  for(int i = 0; i < pos_imgs.size(); i++){ 
   if(sc->predict(*pos_imgs[i])) 
    det++; 
  } 
 
  std::cout << "Trained Strong Classifier " << strongCs.size() << " Number of weak 
classifiers: " << sc->weakCs.size() << " fi: " << fi << std::endl; 
  std::cout << "\tDet: " << det << std::endl; 
 
  std::stringstream filename; 
  filename << "ccdata\\" << month << "_" << day << "_" << year << "_n" << count << 
".txt"; 
  saveToFile(filename.str()); 
 
  count++; 
 
  for(IntegralHOGImgFixed * ihif : neg_imgs) 
   delete ihif; 
  neg_imgs.clear(); 
 } 
 
 for(IntegralHOGImgFixed * ihif : pos_imgs) 
  delete ihif; 
} 
 
bool CascClassifier::predict(IntegralHOGImgFixed &ihif){ 
 for(int i = 0; i < strongCs.size(); i++) 
  if(!strongCs[i]->predict(ihif)) 
   return false; 
 return true; 
} 
 
float CascClassifier::predict(IntegralHOGImg &ihi, Point p){ 
 float sum = 0.0001; //default positive 
 for(int i = 0; i < strongCs.size(); i++){ 
  float pred = strongCs[i]->predict(ihi, p); 
  if(pred < 0) 
   return -1; 
  else 
   sum+=pred; 
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 } 
 return sum; 
} 
 
bool tieBreak(int r1, int c1, int r2, int c2){ 
 return (r1 * 1000 + c1) < (r2 * 1000 + c2); 
} 
 
int rectDom(RectConfidence rc1, RectConfidence rc2){ 
 Point tl1 = Point(rc1.rect.x, rc1.rect.y); 
 Point br1 = Point(rc1.rect.x+rc1.rect.width, rc1.rect.y+rc1.rect.height); 
 Point tl2 = Point(rc2.rect.x, rc2.rect.y); 
 Point br2 = Point(rc2.rect.x+rc2.rect.width, rc2.rect.y+rc2.rect.height); 
 
 Rect overlap; 
 overlap.x = max(tl1.x, tl2.x); 
 overlap.y = max(tl1.y, tl2.y); 
 overlap.width = min(br1.x, br2.x) - overlap.x; 
 overlap.height = min(br1.y, br2.y) - overlap.y; 
 if(min(overlap.height, overlap.width) <= 0 ) //not overlapping at all 
  return 0; 
 else 
 
 if(((double)overlap.width*overlap.height)/min(rc1.rect.width*rc1.rect.height,rc2.rect.w
idth*rc2.rect.height) >= .65) 
   return (rc1.conf >= rc2.conf) ? 1 : 2; 
  else 
   return 0; 
} 
 
void CascClassifier::findPeople(Mat &img, vector<RectConfidence> &alldets, 
vector<RectConfidence> &retval){ 
 double scale = 1.0; 
 float width = img.cols; 
 //namedWindow("TestWindow2", CV_WINDOW_AUTOSIZE); 
 int w, h; 
 
 while((w = (int)(img.cols*scale)) >= 66 && (h = (int)(img.rows*scale)) >= 130){ 
  double scalex = ((double)w)/img.cols; 
  double scaley = ((double)h)/img.rows; 
 
  Mat scaledImg(h,w,img.type()); 
 
  resize(img, scaledImg, scaledImg.size(), 0, 0, CV_INTER_LINEAR); 
 
  IntegralHOGImg ihi(scaledImg,9); 
  for(int r = 0; r < ihi.rows-130; r+=8){ 
   for(int c = 0; c < ihi.cols-66; c+=8){ 
    //x = c, y = r 
    float conf = predict(ihi,Point(c,r)); 
    if(conf != -1){ 
     Rect re((int)c/scalex, (int)r/scaley, (int)64/scalex, 
(int)128/scaley); 
     RectConfidence rc; 
     rc.rect = re; 
     rc.conf = conf; 
     alldets.push_back(rc); 
    } 
   } 
  } 
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  scale/=1.05; 
 } 
 
 //Non Maximum Suppression 
 list<int> inds; 
 for(int i = 0; i < alldets.size(); i++) 
  inds.push_back(i); 
 
 list<int>::iterator it1 = inds.begin(); 
 while(it1 != inds.end()){ 
  list<int>::iterator it2 = it1; 
  it2++; 
 
  while(it2 != inds.end()){ 
   int dom = rectDom(alldets[*it1], alldets[*it2]); 
   if(dom == 0) 
    it2++; 
   else if(dom == 1) 
    inds.erase(it2++); 
   else 
    break; 
  } 
 
  if(it2 == inds.end()) 
   it1++; 
  else 
   inds.erase(it1++); 
 } 
 
 for(int ind : inds) 
  retval.push_back(alldets[ind]); 
} 
 
int primes[50] = {3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 
3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 
      3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 
4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 
      4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139}; 
 
vector<Rect> CascClassifier::findFalsePos(Mat &img){ 
 
 vector<Rect> retval; 
 IntegralHOGImg *hogimg = new IntegralHOGImg(img,9); 
 
 int rprime = primes[rand()%50]; 
 int cprime = primes[rand()%50]; 
 
 for(int r = 1; r < img.rows-130 && retval.size() < 10; r++){ 
  for(int c = 1; c < img.cols-66 && retval.size() < 10; c++){ 
   int r1 = (((r+c)*rprime) % (img.rows-131)) + 1; 
   int c1 = (((c)*cprime) % (img.cols-67)) + 1; 
   if(this->predict(*hogimg, Point(c1,r1)) > 0) 
    retval.push_back(Rect(c1,r1,64,128)); 
  } 
 } 
 
 delete hogimg; 
 
 return retval; 
} 
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void CascClassifier::saveToFile(String filename){ 
 ofstream outFile(filename); 
 
 if(outFile.is_open()){ 
  outFile << strongCs.size() << std::endl; 
  for(StrongClassifier * sc : strongCs){ 
   outFile << sc->threshold << std::endl; 
   outFile << sc->weakCs.size() << std::endl; 
   for(WeakClassifier * wc : sc->weakCs){ 
    outFile << wc->shift << std::endl; 
    outFile << wc->weight << std::endl; 
    outFile << wc->feat.box.x << std::endl; 
    outFile << wc->feat.box.y << std::endl; 
    outFile << wc->feat.box.width << std::endl; 
    outFile << wc->feat.box.height << std::endl; 
    for(int i = 0; i < wc->hyperplane.rows; i++){ 
     outFile << wc->hyperplane.at<float>(i) << std::endl; 
    } 
   } 
  } 
 } 
 
 outFile.close(); 
} 
 
void CascClassifier::saveParamsToFile(String filename){ 
 ofstream outFile(filename); 
 
 if(outFile.is_open()){ 
  outFile << "FI_MAX: " << FI_MAX << std::endl; 
  outFile << "F_TARG: " << F_TARG << std::endl; 
  outFile << "DI_MIN: " << DI_MIN << std::endl; 
  outFile << "NRANDFEATS: " << NRANDFEATS << std::endl; 
  outFile << "SVM_C: " << SVM_C << std::endl; 
  outFile << "C1: " << C1 << std::endl; 
  outFile << "C2: " << C2 << std::endl; 
  outFile << "OVERLAP: " << OVERLAP << std::endl; 
 } 
 
 outFile.close(); 
} 
 
void CascClassifier::readFromFile(String filename){ 
 ifstream inFile(filename); 
 
 String line; 
 int nwc, nsc; 
 if(inFile.is_open()){ 
  getline(inFile, line); 
  istringstream(line) >> nsc; 
  for(int sci = 0; sci < nsc; sci++){ 
   strongCs.push_back(new StrongClassifier()); 
   getline(inFile, line); 
   istringstream(line) >> strongCs[sci]->threshold; 
   getline(inFile, line); 
   istringstream(line) >> nwc; 
   for(int wci = 0; wci < nwc; wci++){ 
    strongCs[sci]->weakCs.push_back(new WeakClassifier()); 
    getline(inFile, line); 
    istringstream(line) >> this->strongCs[sci]->weakCs[wci]->shift; 
    getline(inFile, line); 
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    istringstream(line) >> this->strongCs[sci]->weakCs[wci]->weight; 
    getline(inFile, line); 
    istringstream(line) >> this->strongCs[sci]->weakCs[wci]-
>feat.box.x; 
    getline(inFile, line); 
    istringstream(line) >> this->strongCs[sci]->weakCs[wci]-
>feat.box.y; 
    getline(inFile, line); 
    istringstream(line) >> this->strongCs[sci]->weakCs[wci]-
>feat.box.width; 
    getline(inFile, line); 
    istringstream(line) >> this->strongCs[sci]->weakCs[wci]-
>feat.box.height; 
    strongCs[sci]->weakCs[wci]->hyperplane = Mat::zeros(36,1,CV_32F); 
    for(int r = 0; r < 36; r++){ 
     getline(inFile, line); 
     istringstream(line) >> strongCs[sci]->weakCs[wci]-
>hyperplane.at<float>(r); 
    } 
   } 
  } 
 } 
 
 inFile.close(); 
} 
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NO. OF 

COPIES ORGANIZATION 

 
 1 ADMNSTR 

 (PDF) DEFNS TECHL INFO CTR  

  ATTN DTIC OCP 

 
 1 GOVT PRINTG OFC 

  (PDF)  A MALHOTRA 

 
 4 US ARMY CERDEC NVESD  

(PDFS) ATTN L GRACEFFO  

  ATTN M GROENERT  

  ATTN J HILGER 

  ATTN J WRIGHT 

 
 2 US ARMY AMRDEC 

(PDFS) ATTN RDMR WDG I J MILLS  

  ATTN RDMR WDG S D WAAGEN  

 
 2 US ARMY RSRCH OFFICE  

(PDFS) ATTN RDRL ROI C L DAI  

  ATTN RDRL ROI M J LAVERY  

 
 18 US ARMY RSRCH LAB 

(PDFS) ATTN IMAL HRA MAIL & RECORDS MGMT 

  ATTN RDRL CIO LL TECHL LIB 

  ATTN RDRL SE P PERCONTI 

  ATTN RDRL SES J EICKE 

  ATTN RDRL SES M D’ONOFRIO  

  ATTN RDRL SES N NASRABADI 

  ATTN RDRL SES E R RAO 

  ATTN RDRL SES E A CHAN  

  ATTN RDRL SES E H KWON 

  ATTN RDRL SES E S YOUNG  

  ATTN RDRL SES E J DAMMANN 

  ATTN RDRL SES E D ROSARIO 

  ATTN RDRL SES E H BRANDT 

  ATTN RDRL SES E S HU 

  ATTN RDRL SES E M THIELKE 

  ATTN RDRL SES E P RAUSS 

  ATTN RDRL SES E P GURRAM 

  ATTN RDRL SES E C REALE 
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